Lagrange geometry on tangent manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrange Geometry on Tangent Manifolds

Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a nondegenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a family...

متن کامل

Lagrange geometry on tangent manifolds by Izu Vaisman

Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a non degenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization, which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a fami...

متن کامل

Lagrange Geometry via Complex Lagrange Geometry

Asking that the metric of a complex Finsler space should be strong convex, Abate and Patrizio ([1]) associate to the real tangent bundle a real Finsler metric for which they analyze the relation between Cartan (real) connection of the obtained space and the real image of Chern-Finsler complex connection. Following the same ideas, in the present paper we shall deal with the more general case of ...

متن کامل

Manifolds with Multiplication on the Tangent Sheaf

This talk reviews the current state of the theory of F–(super)manifolds (M, ◦), first defined in [HeMa] and further developed in [He], [Ma2], [Me1]. Here ◦ is an OM–bilinear multiplication on the tangent sheaf TM , satisfying an integrability condition. F–manifolds and compatible flat structures on them furnish a useful weakening of Dubrovin’s Frobenius structure which naturally arises in the q...

متن کامل

Nonlinear Connections and Semisprays on Tangent Manifolds

The well–known notions from tangent bundle geometry, like nonlinear connections and semisprays, are extended to bundle–type tangent manifolds. Also, new objects interesting from a dynamical point of view, like symmetries of nonlinear connections, are introduced. AMS Mathematics Subject Classification (2000): 58A30, 34A26, 37C10, 53C15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2003

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171203303059